Neuroprotection by lamotrigine in a rat model of neonatal hypoxic-ischaemic encephalopathy.
نویسندگان
چکیده
Hypoxic-ischaemic (HI) encephalopathy is a severe complication of perinatal asphyxia and remains a frequent cause of a variety of brain disorders with long-term effects on the patients' life. The associated brain damage is strongly related to the toxic action of excitatory amino acids, especially glutamate and aspartate. Lamotrigine is an anti-epileptic drug that blocks the voltage-gated sodium channels of the presynaptic neuron and inhibits the release of glutamate. In the present study a well-established model of perinatal asphyxia in 7-d-old rats was used to investigate the effect of lamotrigine on HI-induced damage to different hippocampal brain structures, since disruption of this brain area is thought to play a key role in schizophrenia and epilepsy. Therefore, a combination of ischaemia, induced by unilateral occlusion of the left common carotid artery, followed by exposure to a 1-h period of hypoxia, was carried out in neonatal 7-d-old rats. Immediately after the insult, lamotrigine was given i.p. The histological outcome in the hippocampus was conducted and the tissue levels of glutamate, aspartate, GABA, and glutamine in the same area were determined. A remarkable reduction of HI-evoked damaged neurons in most of the investigated hippocampal regions was noted after lamotrigine administration. Furthermore, lamotrigine decreased the asphyxia-induced hippocampal tissue levels of glutamate and aspartate. Immediately after perinatal asphyxia GABA levels were enhanced, while levels of glutamine were decreased. Lamotrigine administration did not affect either GABA or glutamine levels. These results suggest a neuroprotective effect of lamotrigine in this particular animal model of neonatal HI encephalopathy.
منابع مشابه
Caffeic acid phenethyl ester prevents neonatal hypoxic-ischaemic brain injury.
Neonatal hypoxic-ischaemic (HI) brain injury resulting in encephalopathy is a leading cause of morbidity and mortality with no effective treatment. Here we show that caffeic acid phenethyl ester (CAPE), an active component of propolis, administered either before or after an HI insult, significantly prevents HI-induced neonatal rat brain damage in the cortex, hippocampus and thalamus. In additio...
متن کاملThe role of pentoxifylline on neuroprotection in neonatal rat model of hypoxic ischemic brain injury
Despite important progress in obstetric and neonatal care hypoxic-ischemic encephalopathy (HIE) during gestation and perinatal period are common causes of neonatal brain damage which are frequently associated with neurodevelopmental disorders, including cerebral palsy, epilepsy, memory deficits, learning disabilities, and other cognitive impairments [1-3]. Incidence is 1 to 2 per 1000 live birt...
متن کاملNeuroprotection of lamotrigine on hypoxic-ischemic brain damage in neonatal rats: Relations to administration time and doses
Lamotrigine (LTG), an antiepileptic drug, has been shown to be able to improve cerebral ischemic damage by limiting the presynaptic release of glutamate. The present study investigated further the neuroprotective effect of LTG on hypoxic-ischemic brain damage (HIBD) in neonatal rats and its relations to administration time and doses. The HIBD model was produced in 7-days old SD rats by left com...
متن کاملTreatment advances in neonatal neuroprotection and neurointensive care.
Knowledge of the nature, prognosis, and ways to treat brain lesions in neonatal infants has increased remarkably. Neonatal hypoxic-ischaemic encephalopathy (HIE) in term infants, mirrors a progressive cascade of excito-oxidative events that unfold in the brain after an asphyxial insult. In the laboratory, this cascade can be blocked to protect brain tissue through the process of neuroprotection...
متن کاملStem Cell Therapy in Hypoxic Ischemic Encephalopathy
Introduction there are one million deaths from asphyxia in newborn annually. Management of this newborn is only supportive. Autologuse stem cell therapy may reduce mortality and long term morbidity. Outcome of asphyxiated newborn is related to damage CNS cells. Stem cells prevent Apoptosis and induce repairmen of injured neurons. Methods in a review study all article related to three keyword...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The international journal of neuropsychopharmacology
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2008